Как решать генетические задачи по биологии

Совет 1: Как решать генетические задачи по биологии

В школьном курсе биологии, в старших классах вы наверно познакомились, либо же еще познакомитесь с генетическими задачами. Генетика – крайне увлекательная наука. Она постигает обоснованности изменяемости и наследственности. Представители всякого из биологических видов воспроизводят сходственных себе. Впрочем нет одинаковых особей, все потомки в большей либо меньшей степени отличаются от своих родителей. Генетика, как наука, дает вероятность предсказывать и исследовать передачу преемственных знаков.

Инструкция

1. Для решения генетических задач применяют определенные типы изыскания. Способ гибридологического обзора был разработан Г. Менделем. Он дозволяет выявить обоснованности наследования отдельных знаков при половом размножении организмов. Сущность данного способа примитивна: при обзоре определенных альтернативных знаков прослеживается передача их в потомстве. Также проводиться точный контроль проявления всякого альтернативного знака и нрав всякой отдельной особи потомства.

2. Основные обоснованности наследования также были разработаны Менделем. Ученый вывел три закона. В последствии их так и назвали – законы Менделя. 1-й – это закон единообразия гибридов первого поколения. Возьмите две гетерозиготные особи. При скрещивании они дадут два вида гамет. Потомство у таких родителей возникнуть в соотношении 1:2:1.

Р - родители;G - гаметы; F1 - потомство.

3. 2-й закон Менделя – это закон расщепления. в основе его заявление, что доминантный ген не неизменно подавляет рецессивный. В этом случае не все особи среди первого поколения воспроизводят знаки родителей – возникает так называемый промежуточный нрав наследования. Скажем, при скрещивании гомозиготных растений с красными цветками (АА) и белыми цветками (аа) получается потомство с розовыми. Неполное доминирование достаточно распространенное явление. Оно встречается и в некоторых биохимических знаках человека.

Как решать генетические задачи по биологии

4. 3-й закон и конечный – закон самостоятельного комбинирования знаков. Для проявления этого закона нужно соблюдение нескольких условий: не должно быть летальных генов, доминирование должно быть полным, гены обязаны находиться в различных хромосомах.

5. Особняком стоят задачи по генетике пола. Различают два вида половых хромосом: Х-хромосома (женская) и Y-хромосома (мужская). Пол, имеющий две идентичные половые хромосомы, называют гомогаметным. Пол, определяемый разными хромосомами, именуется гетерогаметным. Пол грядущей особи определяется в момент оплодотворения. В половых хромосомах, помимо генов, несущих информацию о поле, содержатся и другие, не имеющие никакого отношения к этому. Скажем, ген, отвечающий за свертываемость крови, несет женская Х-хромосома. Сцепленные с полом знаки передаются от матери к сыновьям и дочерям, от папы же – только к дочерям.

Совет 2: Как решать задачи по биологии

Все задачи по биологии делятся на задачи по молекулярной биологии и задачи по генетике. В молекулярной биологии есть несколько тем, в которых есть задачи : белки, нуклеиновые кислоты, код ДНК и энергетический обмен.

Инструкция

1. Решайте задачи по теме «Белки» с поддержкой дальнейшей формулы: m(min) = a/b*100%, где m(min) – минимальная молекулярная масса белка, a – ядерная либо молекулярная масса компонента, b – процентное оглавление компонента. Средняя молекулярная масса одного кислотного остатка равна 120.

2. Вычисляйте нужные величины по теме «Нуклеиновые кислоты», придерживаясь правил Чаргаффа:1.Число аденина равно числу тимина, а гуанина – цитозину;2.Число пуриновых оснований равно числу пиримидиновых оснований, т.е. А+Г = Т+Ц.В цепи молекулы ДНК расстояние между нуклеотидами равно 0,34 нм. Относительная молекулярного масса одного нуклеотида равна 345.

3. Задачи на тему «Код ДНК» решайте с подмогой особой таблицы генетических кодов. Вследствие ей вы узнаете, какую кислоту кодирует тот либо другой генетический код.

4. Вычисляйте необходимый вам результат для задач на тему «Энергетический обмен» по уравнению реакции. Одним из зачастую встречающихся является: С6Н12О6 + 6О2 ? 6СО2 + 6Н2О.

5. Находите решение задач на генетику по особому алгорифму. Во-первых, определите какие гены являются доминантными(А, В), а какие рецессивными(a,b). Доминантным именуется ген, знак которого проявляется как в гомозиготном (АА, аа), так и в гетерозиготном состоянии(Аа, Bb). Рецессивным именуется ген, знак которого проявляется только при встрече идентичных генов, т.е. в гомозиготном состоянии. Скажем, растения гороха с желтыми семенами скрестили с растениями гороха с зелеными семенами. Полученные растения гороха все имели желтые семена. Видимо, что желтый цвет семян является главенствующим знаком. Записывайте решение этой задачи так: А – ген, отвечающий за желтый цвет семян, а – ген, отвечающий за зеленый цвет семян.Р: АА x aaG: A, aF1: AaСуществуют задачи такого типа с несколькими знаками, тогда один знак обозначайте A либо a, а 2-й B либо b.

Обратите внимание!
Задачи являются комбинированный частью каждого курса биологии и дюже значимо уметь их решать.

Совет 3: Как решать задачи по генетике

При постижении генетики огромное внимание уделяется задачам, решение которых должно быть обнаружено с применением законов наследования генов. Большинству постигающих натуральные науки решение задач по генетике кажется одной из самых трудных пророческой в биологии. Тем не менее, оно находится по несложному алгорифму.



Вам понадобится

  • – учебник.

Инструкция

1. Для начала наблюдательно прочитайте задачу и запишите короткое схематичное условие, применяя особые символы. Обозначьте, какими генотипами владеют родители, и какой им соответствует фенотип. Запишите, какие вышли дети в первом и втором поколениях.

2. Подметьте, какой ген является доминантным, а какой – рецессивным, если это есть в условии. Если в задаче дано расщепление, также укажите его в схематичной записи. Для примитивных задач по генетике порой довольно положительной записать условие, дабы осознать решение задачи .

3. Приступайте к решению. Запишите еще раз произошедшее скрещивание: генотипы родителей, образовавшиеся гаметы и генотипы (либо полагаемые генотипы) детей.

4. Для удачного решения задачи вам нужно осознать, к какому разделу она относится: моногибридное, дигибридное либо полигибридное скрещивание, наследование, сцепленное с полом либо знак наследуется при взаимодействии генов. Для этого посчитайте, какое расщепление генотипа либо фенотипа отслеживается в потомстве в первом поколении. В условии может быть указано точное число особей с всяким генотипом либо фенотипом, либо процент всего генотипа (фенотипа) от всеобщего числа. Эти данные необходимо привести к простым числам.

5. Обратите внимание, не различается ли у потомства знаки в зависимости от пола.

6. Всем типу скрещивания свойственно свое специальное расщепление по генотипу и фенотипу. Все эти данные содержатся в учебнике, и вам будет комфортно выписать эти формулы на обособленный лист и применять их при решении задач.

7. Сейчас, когда вы нашли расщепление, по тезису которого идет передача преемственных знаков в вашей задаче, вы можете узнать генотипы и фенотипы всех особей в потомстве, а также генотипы и фенотипы родителей, участвовавших в скрещивании.

8. Запишите полученные данные в результат.

Совет 4: Как обучиться решать задачи по генетике

Постижение генетики сопровождается решением задач. Они наглядно показывают действие закона наследования генов. Большинству учащихся решение этих задач кажется немыслимо трудным. Но, зная алгорифм решения, вы легко совладаете с ними.

Инструкция

1. Дозволено выделить два основных типа генетических задач. В первом типе задач вестимы генотипы родителей. Определить нужно генотипы потомков. Вначале определите, какой аллель является доминантным. Обнаружьте рецессивный аллель. Запишите генотипы родителей. Выпишите все допустимые типы гамет. Объедините гаметы. Определите расщепление.

2. В задачах второго типа все напротив. Тут знаменито расщепление в потомстве. Требуется определить генотипы родителей. Обнаружьте так же, как и в задачах первого типа, какой из аллелей является доминантным, какой – рецессивным. Определите допустимые типы гамет. По ним определите генотипы родителей.

3. Дабы решить задачу верно, прочтите её наблюдательно и проанализируйте условие. Дабы определить тип задачи, узнаете, сколько пар знаков рассматривается в задаче. Обратите внимание также на то, сколько пар генов контролируют становление знаков. Значимо узнать, гомозиготные либо гетерозиготные организмы скрещиваются, каков тип скрещивания. Определите, само­стоятельно либо сцеплено наследуются гены, сколько генотипов образуется в потомстве и связано ли наследование с полом.

4. Приступите к решению задачи. Сделайте короткую запись данные. Запишите генотип либо фенотип особей, участвующих в скрещивании. Определите и подметьте типы образовавшихся гамет. Запишите генотипы либо фенотипы потомства, полученного от скрещивания. Проанализируйте итоги, запишите их в численном соотношении. Напишите результат.

5. Помните, что всему типу скрещивания соответствует специальное расщепление по генотипу и фенотипу. Все эти данные дозволено обнаружить в учебниках либо других пособиях. Выпишите все формулы на обособленный лист и удерживаете его неизменно под рукой. Также вы можете воспользоваться особыми таблицами для решения задач по генетике.

Совет 5: Как оформить кабинет биологии

Со вкусом оформленный школьный кабинет повышает ярус интереса учащихся к постигаемому предмету, создает комфортабельную учебную атмосферу. Как оформить кабинет биологии таким образом, дабы учащиеся с удовольствием приходили в него на уроки, а учителю было удобно преподавать в этом помещении?

Инструкция

1. Оформите тематические стенды на одной из боковых стен кабинета. Они могут носить наименования: «Эволюция Земли», «Строение клетки», «Сбережем для потомков и т.п. Некоторые стенды могут быть снабжены сменными панелями. Сделайте стенд с работами учащихся: докладами, докладами, рисунками, увлекательными фотографиями природы и т.п. Используйте переносной стенд с дополнительной письменностью по предмету с целью возрастания интереса учащихся к биологии.

2. Используйте в оформлении кабинета биологии портреты знаменитых ученых: Ч.Дарвина, К.А.Тимирязева, И.М.Сеченова, И.П.Павлова и других.

3. Установите в кабинете телевизор с DVD-проигрывателем и учебными дисками, дабы учащиеся сумели глядеть познавательные тематические фильмы.

4. Украсьте кабинет биологии живой растительностью: это могут быть комнатные цветы, цитрусовые и пальмы, выращенные в кадках. Класснее выбирать такие растения для украшения класса, которые сумеют быть использованы в качестве демонстрационного материала на уроках.

5. Сделайте живой уголок в кабинете биологии: поместите в нем аквариум с рыбками, поселите хомячков либо черепаху; дозволено ограничиться и одним аквариумом.

6. Бережете наглядные пособия, используемые как средства обучения на уроках биологии (коллекции, гербарии, модели, и т.д.) на полках шкафов либо на отдельных подвесных полочках. Таблицы и особенно хрупкие и дорогие материалы (приборы, модели, сырые препараты и т.п.) класснее беречь в закрытых тумбочках.

7. Выберите всеобщее цветовое решение кабинета в соответствии с естественными природными красками. Скажем, стены и шторы дозволено сделать в разных оттенках зеленого цвета, панели окрасить в бежевый цвет, тот, что будет перекликаться с цветом мебели.

8. Нарисуйте на потолке кабинета природный орнамент с огромными разноцветными кругами (скажем, цветы), тот, что дозволено будет применять во время физкультминуток для тренировки глаз.

Полезный совет
Поощряйте учащихся, тяготящихся украсить кабинет биологии своими поделками, рисунками и т.п., развивайте у них чувство вкуса и любви к природе.

Совет 6: Как решать задачи на дигибридное скрещивание

Г. Мендель в своих генетических навыках применял гибридологический способ. Он скрещивал растения гороха, отличающиеся по одному либо нескольким знакам. После этого ученый анализировал нрав проявления знаков у потомства.

Инструкция

1. Чистые линии – это сорта растений, имеющих определенный непрерывный знак, скажем, желтый либо зеленый цвет семян. Моногибридное скрещиваниескрещивание 2-х чистых линий растений, отличающихся только по одному знаку. При дигибридном скрещивании берутся особи, у которых рассматривают различия по двум знакам.

2. Пускай, скажем, имеется чистая линия гороха с желтыми гладкими семенами, и линия с зелеными и морщинистыми. Знаки определяются парами генов, при этом одна пара генов кодирует цвет семян, иная – их форму. Желтая окраска и гладкая форма – доминантные гены, зеленая окраска и морщинистость семян – рецессивные.

3. В первом поколении все семена гороха будут желтыми и гладкими, по закону единообразия гибридов первого поколения. Тут отслеживается явление полного доминирования: проявляются только доминантные гены, а рецессивные подавляются.

Первое поколение гибридов

4. Для последующего решения задачи на дигибридное скрещивание нужно заполнить решетку Пеннета. Растения первого поколения F1, сливаясь между собой, дадут четыре вида гамет: AB, Ab, aB и ab. Начертите каркас прямоугольной таблицы размерностью четыре на четыре. Сверху над столбцами обозначьте гаметы. Подобно распишите гаметы слева от строк. Это напоминает игру в морской бой.

Решетка Пеннета

5. Все допустимые сочетания этих четырех видов гамет дадут во втором поколении 9 разных генотипов: AABB, AaBB, AABb, AaBb, aaBB, AAbb, aaBb, Aabb, aabb. Но отслеживаться будут только четыре фенотипа: желтые – гладкие, желтые – морщинистые, зеленые – гладкие, зеленые – морщинистые. Соотношение отслеживаемых фенотипов 9:3:3:1.

6. Если отдельно разглядеть пропорции между желтыми и зелеными горошинами, они будут составлять 3:1, как и в случае с моногибридным скрещивание м. То же самое относится и к гладкости либо морщинистости семян.

7. Выходит, правило расщепления выполняется для моно- и дигибридного скрещивания идентично. Следственно дозволено сделать итог о том, что гены и закодированные ими знаки при дигибридном скрещивании наследуются само­стоятельно друг от друга. Закон самостоятельного наследования знаков объективен только тогда, когда гены расположены в различных негомологичных хромосомах.

Обратите внимание!
Полное доминирование отслеживается не неизменно. Существует еще несколько видов: неполное доминирование, кодоминирование, сверхдоминирование.

Совет 7: Как передается генетическая информация

Генетической информацией именуется программа свойств живого организма, заложенная в виде генетического кода в преемственных конструкциях (молекулах ДНК). Догадка о том, что сходственная информация записана на молекулярном ярусе, впервой была сформулирована выдающимся отечественным биологом Н. К. Кольцовым еще в 20-х годах 20 столетия.

Инструкция

1. Примерно каждая генетическая информация находится в ядрах клеток живого организма, за нее несут ответственность макромолекулы ДНК (дезоксирибонуклеиновой кислоты), входящие в конструкции хромосом. В человеческом организме находится больше 2-х метров ДНК. В них при помощи особого генетического кода зашифрована информация о строении белков, о структуре и функции клеток, о знаках всякой клетки и, в совокупности, каждого организма.

2. ДНК программирует конструкцию органических соединений, управляет синтезом и расщеплением. Эта информация предается при репликации (удвоении) ДНК. Система ее записи в молекуле представлена генетическим кодом – информацией о строении молекулы полипептида (типах аминокислот, числе и последовательности их расположения). В одном гене находятся данные об одной полипептидной цепочке. Молекулы ДНК по сути – это матрицы для синтеза белков, вся из них содержит уйма различных генов, которые человек получает от родителей.

3. Ученые установили, что все клетки одного организма содержат идентичный комплект генов. Выполнения разными клетками различных функций обусловлено тем, что, в них реализуется не каждая преемственная информация, а только надобные участки – гены. Сходственный процесс выполняется во время синтеза белковых молекул при помощи 3 РНК: рибосомальной (рРНК), информационной (иРНК), транспортной (тРНК). Передача информации идет по каналу прямой связи (ДНК – РНК – белок) и по каналу обратной связи (внешняя среда – белок – ДНК).

4. Живые организмы могут получить, сберечь и передать информацию, применяя ее максимально результативно. Заложенные в генах данные передаются от индивида его потомкам. Эта информация применяется для становления и размножения, определяет направление становления организма. В процессе взаимодействий индивида с окружающей средой реакция на ее может искажаться, в итоге обеспечивается эволюция становления потомков. При этом клетками «запоминается» новая информация.

5. При реализации преемственной программы формируется фенотип организма данного биологического вида в определенных условиях внешней среды, определяется морфологическое строение, становление, рост, метаболизм, психический склад, предрасположенность к болезням, преемственные изъяны организма. Многие ученые подчеркивали существенную роль сходственной информации в эволюции и подмечали это обстоятельство как один из основных критериев жизни.

Видео по теме

Понравилась статья? Поделиться с друзьями:
Добавить комментарий