• Без рубрики

Как делить матрицы

Совет 1: Как разделять матрицы

Матричная алгебра – раздел математики, посвященный постижению свойств матриц, их использованию для решения трудных систем уравнений, а также правилам действий над матрицами, включая деление.

Инструкция

1. Существует три действия над матрицами: сложение, вычитание и умножение. Деление матриц, как таковое, действием не является, но его дозволено представить в виде умножения первой матрицы на матрицу, обратную ко 2-й:A/B = A·B^(-1).

2. Следственно операция деления матриц сводится к двум действиям: поиску обратной матрицы и умножению ее на первую. Обратной именуется такая матрица A^(-1), которая при умножении на A дает единичную матрицу.

3. Формула обратной матрицы: A^(-1) = (1/?)•B, где ? — определитель матрицы, тот, что должен быть хорош от нуля. Если это не так, то обратная матрица не существует. B – матрица, состоящая из алгебраических дополнений начальной матрицы А.

4. Скажем, исполните деление заданных матриц.

5. Обнаружьте матрицу, обратную ко 2-й. Для этого вычислите ее определитель и матрицу алгебраических дополнений. Запишите формулу определителя для квадратной матрицы третьего порядка:? = a11·a22·a33 + a12·a23·a31 + a21·a32·a13 – a31·a22·a13 – a12·a21·a33 – a11·a23·a32 = 27.

6. Определите алгебраические дополнения по указанным формулам:A11 = a22•a33 — a23•a32 = 1•2 – (-2)•2 = 2 + 4 = 6;A12 = -(a21•a33 — a23•a31) = -(2•2 – (-2)•1) = -(4 + 2) = -6;A13 = a21•a32 — a22•a31 = 2•2 – 1•1 = 4 – 1 = 3;A21 = -(a12•a33 — a13•a32) = -((-2)•2 — 1•2) = -(-4 — 2) = 6;A22 = a11•a33 — a13•a31 = 2•2 – 1•1 = 4 – 1 = 3;A23 = -(a11•a32 — a12•a31) = -(2•2 – (-2)•1) = -(4 + 2) = -6;A31 = a12•a23 — a13•a22 = (-2)•(-2) – 1•1 = 4 – 1 = 3;A32 = -(a11•a23 — a13•a21) = -(2•(-2) — 1•2) = -(-4 — 2) = 6;A33 = a11•a22 — a12•a21 = 2•1 – (-2)•2 = 2 + 4 = 6.

7. Поделите элементы матрицы алгебраических дополнений на величину определителя, равную 27. Таким образом, вы получили матрицу, обратную ко 2-й. Сейчас задача сводится к умножению первой матрицы на новую.

8. Исполните умножение матриц по формуле C = A*B:c11 = a11•b11 + a12•b21 + a13•b31 = 1/3;c12 = a11•b12 + a12•b22 + a13•b23 = -2/3;c13 = a11•b13 + a12•b23 + a13•b33 = -1;c21 = a21•b11 + a22•b21 + a23•b31 = 4/9;c22 = a21•b12 + a22•b22 + a23•b23 = 2/9;c23 = a21•b13 + a22•b23 + a23•b33 = 5/9;c31 = a31•b11 + a32•b21 + a33•b31 = 7/3;c32 = a31•b12 + a32•b22 + a33•b23 = 1/3;c33 = a31•b13 + a32•b23 + a33•b33 = 0.

Совет 2: Отчего невозможно разделять на ноль

Разделять на ноль невозможно, это вестимо всем школьнику, но многим идеально неясно отчего. Поводы этого правила дозволено узнать только в высшем учебном заведении, и то только если вы будете постигать математику. В реальности, основание того, что на ноль разделять невозможно, не такое уж трудное. Узнать это было бы дюже увлекательно многим школьникам.


Повод того, что невозможно разделять на ноль , лежит в математике. В то время как в арифметике есть четыре основные операции над числами (это сложение, вычитание, умножение и деление), в математике таких только две из них (это сложение и умножение). Именно они включены в определение числа. Дабы определить, что такое вычитание и деление, необходимо воспользоваться сложением и умножением и вывести новые операции из них. Дабы осознать данный момент, благотворно разглядеть несколько примеров. Скажем, операция 10-5, с точки зрения ученика школы, обозначает, что от числа 10 отнимается число 5. Но математика ответила бы на вопрос о том, что тут происходит, напротив. Данная операция была бы сведена к уравнению x+5=10. Незнакомое в данной задаче это x, именно оно и является итогом так называемого вычитания. С делением все происходит подобно. Оно каждого лишь верно также выражается через умножение. При этом, итог – это примитивно подходящее число. Скажем, 10:5 математик записал бы как 5*x=10. Данная задача имеет однозначное решение. Учтя все это, дозволено осознать, отчего невозможно разделять на ноль . Запись 10:0 превратилась бы в 0*x=10. То есть, итогом стало бы число, которое при умножении на 0 дает другое число. Но каждому знаменито правило о том, что всякое число, умноженное на ноль , дает ноль . Это качество включено в представление о том, чем является ноль . Следственно получается, что задача о том, как поделить число на ноль , не имеет решения. Это типичная обстановка, много задач в математике не имеют решения. Но как может показаться, из этого правила есть одно исключение. Да, ни одно число невозможно разделять на ноль , но чай сам ноль дозволено? Скажем, 0*x=0. Это чай правильное равенство. Но загвоздка в том, что на месте x может быть идеально всякое число. Следственно итогом такого уравнения стала бы идеальная неясность. Нет причин выбрать какой-нибудь один итог. Следственно ноль на ноль разделять тоже невозможно. Правда, в математическом обзоре с сходственными неопределенностями умеют справляться. Выясняют, нет ли в задаче дополнительных условий, вследствие которым становится допустимым «раскрыть неясность» — так это именуется. Но в арифметике так не делают.

Видео по теме

Совет 3: Как вычислять матрицу в excel

Для вычисления значений матрицы либо выполнения других математических расчетов используйте программу Microsoft Office Excel. Также вы можете воспользоваться и бесплатными ее аналогами, правило действия тут будет фактически идентичным.



Вам понадобится

  • — программа Microsoft Office Excel.

Инструкция

1. Запустите программу Microsoft Office Excel. В меню ввода данных впишите данную вам матрицу для дальнейшего вычисления ее определителя. Выделите одну из незанятых ячеек таблицы, позже чего введите следующую формулу: “=МОПРЕД(ak:fg)”. В данном случае ak будет обозначать координаты, соответствующие левому верхнему углу заданной матрицы, а fg – нижнему правому. Для приобретения определителя нажмите клавишу Enter. Надобное значение будет отображено в выбранной вами пустой ячейке.

2. Используйте функционал Excel для вычисления и других значений. В случае если вы не умеете применять формулы в Microsoft Office Excel, скачайте особую тематическую литературу, и позже прочтения вам будет довольно легко сориентироваться по данной программе.

3. Наблюдательно изучите названия значений формул в данном программном обеспечении, от того что при неправильном их вводе у вас могут испортиться сразу все итоги, в особенности это касается тех, кто исполняет сразу несколько идентичных вычислений по одной формуле единовременно.

4. Время от времени исполняйте проверку полученных в Microsoft Office Excel итогов вычисления. Это связано с тем, что в системе могли случиться какие-нибудь метаморфозы со временем, в частности это относится к тем, кто исполняет работу по образца. Неизменно нелишним будет ненужный раз сверить итоги сразу нескольких нынешних вычислений.

5. Также при работе с формулами будьте весьма осмотрительны и не допускайте происхождения в вашем компьютере вирусов. Даже в случае если операции с формулами в Microsoft Office Excel потребуется вам единоразово, изучите функционал данной программы в большей степени, от того что эти навыки помогут вам в будущем отменнее понимать автоматизацию учета и использовать Excel для выполнения определенных заданий.

Читайте также:

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *