Как найти периметр прямоугольной трапеции

Совет 1: Как обнаружить периметр прямоугольной трапеции

Трапеция – четырехугольник с двумя параллельными основаниями и не параллельными боковыми сторонами. Прямоугольная трапеция имеет прямой угол при одной боковой стороне.

Инструкция

1. Периметр прямоугольной трапеции равен сумме длин сторон 2-х оснований и 2-х боковых сторон. Задача 1. Обнаружьте периметр прямоугольной трапеции , если вестимы длины всех его сторон. Для этого сложите все четыре значения: P (периметр) = a + b + c + d.Это самый примитивный вариант нахождения периметра, задачи с другими исходными данными, в финальном выводе, сводятся к ней. Разглядим варианты.

2. Задача 2.Обнаружьте периметр прямоугольной трапеции , если знаменито нижнее основание AD = a, не перпендикулярная ему боковая сторона CD = d, а угол при этой боковой стороне ADC равен Альфа.Решение.Проведите высоту трапеции из вершины C на большее основание, получим отрезок CE, трапеция разделилась на две фигуры – прямоугольник ABCE и прямоугольный треугольник ECD. Гипотенуза треугольника – это вестимая нам боковая сторона трапеции CD, один из катетов равен перпендикулярной боковой стороне трапеции (по правилу прямоугольника две параллельные стороны равны – AB = CE), а иной – отрезок, длина которого равна разности оснований трапеции ED = AD – BC.

3. Обнаружьте катеты треугольника: по присутствующим формулам CE = CD*sin(ADC) и ED = CD*cos(ADC).Сейчас вычислите верхнее основание – BC = AD – ED = a – CD*cos(ADC) = a – d*cos(Альфа).Узнайте длину перпендикулярной боковой стороны – AB = CE = d*sin(Альфа).Выходит, вы получили длины всех сторон прямоугольной трапеции .

4. Сложите полученные значения, это и будет периметр прямоугольной трапеции :P = AB + BC + CD + AD = d*sin(Альфа) + (a – d*cos(Альфа)) + d + a = 2*a + d*(sin(Альфа) – cos(Альфа) + 1).

5. Задача 3.Обнаружьте периметр прямоугольной трапеции , если вестимы длины его оснований AD = a, BC = c, длина перпендикулярной боковой стороны AB = b и острый угол при иной боковой стороне ADC = Альфа.Решение.Проведите перпендикуляр CE, получите прямоугольник ABCE и треугольник CED.Сейчас обнаружьте длину гипотенузы треугольника CD = AB/sin(ADC) = b/sin(Альфа).Выходит, вы получили длины всех сторон.

6. Сложите полученные значения:P = AB + BC + CD + AD = b + c + b/sin(Альфа) + a = a + b*(1+1/sin(Альфа) + с.

Совет 2: Как обнаружить длину и ширину периметра

О том, что такое периметр, всякий из нас узнал еще в младших классах. нахождением сторон квадрата при вестимом периметре задач обыкновенно не появляется даже у тех, кто завершил школу давным-давно и поспел позабыть курс математики. Впрочем решить аналогичную задачу в отношении прямоугольника либо прямоугольного треугольника получается без подсказки не каждом.

Инструкция

1. Как решить задачу по геометрии, в условии которой приведены только периметр и углы? Безусловно, если речь идет о остроугольном треугольнике либо многоугольнике, то такую задачу без умения длины одной из сторон решить нереально. Впрочем, если речь идет о прямоугольном треугольнике либо прямоугольнике, то по заданному периметру дозволено обнаружить его стороны. Прямоугольник имеет длину и ширину . Если провести диагональ прямоугольника, дозволено найти, что она разбивает прямоугольник на два прямоугольных треугольника. Диагональ является гипотенузой, а длина и ширина – катетами этих треугольников. У квадрата, являющегося частным случаем прямоугольника, диагональ является гипотенузой прямоугольного равнобедренного треугольника.

2. Представим, что имеется прямоугольный треугольник со сторонами a, b и c, у которого один из углов равен 30 , а 2-й 60. На рисунке видно, что a = c*sin?, а b = c*cos?. Зная, что периметр всякий фигуры, в том числе и треугольника, равен сумме всех его сторон, получаем:a+b+c=c*sin ?+c*cos+c=pИз этого выражения дозволено обнаружить незнакомую сторону c, которая является гипотенузой для треугольника. Потому что угол ? = 30, позже реформирования получим:c*sin ?+c*cos ?+c=c/2+c*sqrt(3)/2+c=pОтсюда следует, что с=2p/[3+sqrt(3)]Соответственно a = c*sin ?=p/[3+sqrt(3)],b=c*cos ?=p*sqrt(3)/[3+sqrt(3)]

Как обнаружить <strong>длину</strong> и <b>ширину</b> <em>периметра</em>

3. Как теснее сказано выше, диагональ прямоугольника делит его на два прямоугольных треугольника с углами 30 и 60 градусов. От того что периметр прямоугольника равен p=2(a + b), ширину a и длину b прямоугольника дозволено обнаружить, исходя из того, что диагональ является гипотенузой прямоугольных треугольников:a = p-2b/2=p[3- sqrt(3)]/2[3+sqrt (3)]b= p-2a/2=p[1 +sqrt(3) ]/2[3+ sqrt(3)]Эти два уравнения выражены через периметр прямоугольника. По ним вычисляются длина и ширина этого прямоугольника с учетом получившихся углов при проведении его диагонали.

Видео по теме


Обратите внимание!
Как обнаружить длину прямоугольника,если знаменит периметр и ширина? Вычесть из периметра удвоенную ширину, тогда получим удвоенную длину. Потом разделяем её напополам, дабы обнаружить длину.

Полезный совет
Еще из исходной школы многие помнят, как обнаружить периметр всякий геометрической фигуры: довольно узнать длину всех ее сторон и обнаружить их сумму.  Вестимо, что в такой фигуре, как прямоугольник, длины сторон равны попарно. Если ширина и высота прямоугольника имеют идентичную длину, то он именуется квадратом. Обыкновенно длиной прямоугольника называют крупнейшую из сторон, а шириной – наименьшую.

Совет 3: Как узнать периметр прямоугольника

Периметр (Р) – сумма длин всех сторон фигуры, а у четырехугольника их четыре. Значит, дабы обнаружить периметр четырехугольника, необходимо легко сложить длины всех его сторон. Но вестимы такие фигуры, как прямоугольник, квадрат, ромб, то есть положительные четырехугольники. Их периметры определяются специальными методами.

Инструкция

1. Если данная фигура – прямоугольник (либо параллелограмм) АВСД, то он владеет следующими свойствами: параллельные стороны попарно равны (см. рисунок). АВ = СД и АС = ВД. Зная такое отношение сторон в этой фигуре, дозволено вывести периметр прямоугольника (и параллелограмма): Р = АВ + СД + АС+ ВД. Пускай одни стороны будут равны числу а, другие – числу в, тогда Р = а + а + в + в = 2*а = 2* в = 2*(а + в). Пример 1. В прямоугольнике АВСД стороны равны АВ = СД = 7 см и АС = ВД = 3 см. Обнаружить периметр такого прямоугольника. Решение: Р = 2*(а + в). Р = 2*(7 +3) = 20 см.

2. Решая задачи на сумму длин сторон с фигурой, называемой квадрат либо ромб, следует использовать несколько видоизмененную формулу периметра. Квадрат и ромб – фигуры , имеющие идентичные четыре стороны. Исходя из определения периметра, Р = АВ + СД + АС+ ВД и допуская обозначение длины буквой а, то Р = а + а + а + а = 4*а. Пример 2. Ромб имеет длину стороны 2 см. Обнаружить его периметр. Решение: 4*2 см = 8 см.

3. Если данный четырехугольник является трапецией, то в этом случае легко необходимо сложить длины четырех ее сторон. Р = АВ + СД + АС+ ВД. Пример 3. Обнаружить периметр трапеции АВСД, если ее стороны равны: АВ = 1 см, СД = 3 см, АС = 4 см, ВД = 2 см. Решение: Р = АВ + СД + АС+ ВД = 1 см + 3 см + 4 см + 2 см = 10 см. Может случиться такое, что трапеция окажется равнобокой (у нее две боковые стороны равны), тогда ее периметр может свестись к формуле: Р = АВ + СД + АС+ ВД = а + в +а + с = 2*а + в + с. Пример 4. Обнаружить периметр равнобокой трапеции, если ее боковые грани равны 4 см, а основания – 2 см и 6 см. Решение: Р = 2*а + в + с = 2 *4см + 2 см + 6 см = 16 см.

Видео по теме


Полезный совет
Никто не мешает находить периметр четырехугольника (и всякий иной фигуры), как сумму длин сторон, не применяя выведенные формулы. Они даны для комфорта и облегчения вычисления. Не является оплошностью способ решения, значим верный результат и умение математической терминологии.

Совет 4: Как обнаружить основания прямоугольной трапеции

Математическая фигура с четырьмя углами именуется трапецией, если пара противоположных ее сторон параллельна, а иная пара – нет. Параллельные стороны называют основаниями трапеции , две другие – боковыми. В прямоугольной трапеции один из углов при боковой стороне – прямой.

Инструкция

1. Задача 1.Обнаружьте основания BC и AD прямоугольной трапеции , если вестима длина диагонали AC = f; длина боковой стороны CD = c и угол при ней ADC = ?.Решение:Разглядите прямоугольный треугольник CED. Знамениты гипотенуза c и угол между гипотенузой и катетом EDC. Обнаружьте длины сторон CE и ED: по формуле угла CE = CD*sin(ADC); ED = CD*cos(ADC). Выходит: CE = c*sin?; ED=c*cos?.

2. Разглядите прямоугольный треугольник ACE. Гипотенуза AC и катет CE вам вестимы, обнаружьте сторону AE по правилу прямоугольного треугольника: сумма квадратов катетов равна квадрату гипотенузы. Выходит: AE(2) = AC(2) – CE(2) = f(2) – c*sin?. Вычислите квадратный корень из правой части равенства. Вы обнаружили верхнее основание прямоугольной трапеции .

3. Длина основания AD является суммой длин 2-х отрезков AE и ED. AE = квадратный корень(f(2) – c*sin?); ED = c*cos?).Выходит: AD = квадратный корень(f(2) – c*sin?) + c*cos?.Вы обнаружили нижнее основание прямоугольной трапеции .

4. Задача 2.Обнаружьте основания BC и AD прямоугольной трапеции , если вестима длина диагонали BD = f; длина боковой стороны CD = c и угол при ней ADC = ?.Решение:Разглядите прямоугольный треугольник CED. Обнаружьте длины сторон CE и ED: CE = CD*sin(ADC) = c*sin?; ED = CD*cos(ADC) = c*cos?.

5. Разглядите прямоугольник ABCE. По свойству прямоугольника AB = CE = c*sin?.Разглядите прямоугольный треугольник ABD. По свойству прямоугольного треугольника квадрат гипотенузы равен сумме квадратов катетов. Следственно AD(2) = BD(2) – AB(2) = f(2) – c*sin?.Вы обнаружили нижнее основание прямоугольной трапеции AD = квадратный корень(f(2) – c*sin?).

6. По правилу прямоугольника BC = AE = AD – ED = квадратный корень(f(2) – c*sin?) – с*cos?.Вы обнаружили верхнее основание прямоугольной трапеции .

Совет 5: Как находить периметр трапеции

Трапеция представляет собой четырехугольник с двумя параллельными и двумя не параллельными сторонами. Дабы вычислить ее периметр, надобно знать размеры всех сторон трапеции. При этом данные в задачах могут быть различными.



Вам понадобится

  • – калькулятор;
  • – таблицы синусов, косинусов и тангенсов;
  • – бумага;
  • – чертежные принадлежности.

Инструкция

1. Самый примитивный вариант задачи – когда даны все стороны трапеции. В этом случае их надобно легко сложить. Дозволено воспользоваться дальнейшей формулой: p=a+b+c+d, где p – периметр, а буквами a, b, c и d обозначены стороны, противолежащие углам, обозначенным соответствующими прописными буквами.

2. Есть дана равнобедренная трапеция, довольно сложить два ее основания и прибавить к ним удвоенный размер стороны. То есть периметр в этом случае вычисляется по формуле: p=a+c+2b, где b – сторона трапеции, а и с – основания.

3. Расчеты будут несколько больше долгими, если какую-то из сторон нужно вычислить. Скажем, вестимо длинное основание, прилежащие к нему углы и высота. Вам надобно вычислить короткое основание и сторону. Для этого начертите трапецию ABCD, из верхнего угла B проведите высоту BE. У вас получится треугольник АВЕ. Вам вестим угол А, соответственно, вы знаете его синус. В данных задачи указана также высота BE, которая единовременно является катетом прямоугольного треугольника, противолежащим знаменитому вам углу. Дабы обнаружить гипотенузу АВ которая единовременно является стороной трапеции, довольно BE поделить на sinA. Верно так же обнаружьте длину 2-й стороны. Для этого надобно провести высоту из иного верхнего угла, то есть CF. Сейчас вам вестимы большее основание и стороны. Для вычисления периметра этого немного, надобен еще размер меньшего основания. Соответственно, в 2-х образовавшихся внутри трапеции треугольниках нужно обнаружить размеры отрезков AE и DF. Это дозволено сделать, скажем, через косинусы вестимых вам углов А и D. Косинус – это отношение прилежащего катета к гипотенузе. Дабы обнаружить катет, необходимо гипотенузу умножить на косинус. Дальше периметр вычислите по той же формуле, что и в первом шаге, то есть сложив все стороны.

4. Еще один вариант: даны два основания, высота и одна из сторон, необходимо обнаружить вторую сторону. Это также отличнее делать с применением тригонометрических функций. Для этого начертите трапецию. Возможен, вам вестимы основания АD и ВС, а также сторона АВ и высота BF. По этим данным вы можете обнаружить угол A (через синус, то есть отношение высоты к знаменитой стороне), отрезок АF (через косинус либо тангенс, от того что угол вам теснее знаменит. Припомните также свойства углов трапеции – сумма углов, прилежащих к одной стороне, составляет 180°. Проведите высоту CF. У вас получился еще один прямоугольный треугольник, в котором вам надобно обнаружить гипотенузу CD и катет DF. Начните с катета. Вычтите из длины нижнего основания длину верхнего, а из полученного итога – длину теснее вестимого вам отрезка АF. Сейчас в прямоугольном треугольнике СFD вам знамениты два катета, то есть вы можете обнаружить тангенс угла D, а по нему – и сам угол. Позже этого останется через синус этого же угла вычислить сторону CD, как теснее было описано выше.

Видео по теме

Понравилась статья? Поделиться с друзьями:
Добавить комментарий