Как найти гипотенузу, зная катет и угол

Совет 1: Как обнаружить гипотенузу, зная катет и угол

Знаменито много видов треугольников: положительный, равнобедренный, остроугольный и так дальше. Все они владеют классическими лишь для них свойствами и у всякого свои правила нахождения величин, будь это сторона либо угол при основании. Но из каждого многообразия этих геометрических фигур в отдельную группу дозволено выделить треугольник с прямым углом.



Вам понадобится

  • Чистый лист, карандаш и линейка для схематического изображения треугольника.

Инструкция

1. Треугольник именуется прямоугольным, если один из его углов равен 90 градусов. Он состоит из 2-х катетов и гипотенузы. Гипотенузой называют крупную сторону этого треугольника. Она лежит вопреки прямого угла. Катетами, соответственно, называют меньшие его стороны. Они могут быть как равны между собой, так и иметь различную величину. Равенство катетов обозначает, что вы трудитесь с равнобедренным прямоугольным треугольником. Прелесть его в том, что он объединяет в себе свойства 2-х фигур: прямоугольного и равнобедренного треугольника. Если катеты не равны, то треугольник произвольный и подчиняется основному закону: чем огромнее угол, тем огромнее лежащий наоборот него катит.

2. Существует несколько методов нахождения гипотенузы по катету и углу. Но раньше чем воспользоваться одним из них, следует определить, какой катет и угол знамениты. Если дан угол и прилежащий к нему катет, то гипотенузу легче все обнаружить по косинусу угла. Косинусом острого угла (cos a) в прямоугольном треугольнике называют отношение прилежащего катета к гипотенузе. Отсель вытекает, что гипотенуза (с) будет равна отношению прилежащего катета (b) к косинуса угла a (cos a). Это дозволено записать так: cos a=b/c => c=b/cos a.

3. Если дан угол и противолежащий катет, то следует трудиться с синусом. Синус острого угла (sin a) в прямоугольном треугольнике есть отношение противолежащего катета (a) к гипотенузе (c). Тут работает тезис, что и в предыдущем примере, только взамен функции косинуса берется синус. sin a=a/c => c=a/sin a.

4. Также дозволено воспользоваться такой тригонометрической функцией, как тангенс. Но нахождение желанной величины слегка усложнится. Тангенсом острого угла (tg a) в прямоугольном треугольнике называют отношение противолежащего катета (а) к прилежащему (b). Обнаружив оба катета, примените теорему Пифагора (квадрат гипотенузы равен сумме квадратов катетов) и огромная сторона треугольника будет обнаружена.

Совет 2: Как обнаружить гипотенузу по катету и углам

Гипотенузой именуется сторона в прямоугольном треугольнике, которая находится наоборот угла в 90 градусов. Для того, дабы рассчитать его длину, довольно знать длину одного из катетов и величину одного из острых углов треугольника.

Инструкция

1. При вестимом катете и остром угле прямоугольного треугольника, то размер гипотенузы может быть равен отношению катета к косинусу/синусу этого угла, если данный угол является ему противолежащим/прилежащим:h = C1(либо C2)/sin?;h = С1(либо С2)/cos?.Пример: Пускай дан прямоугольный треугольник ABC с гипотенузой AB и прямым углом C. Пускай угол B равен 60 градусам, а угол A 30 градусам Длина катета BC 8 см. Нужно обнаружить длину гипотенузы AB. Для этого дозволено воспользоваться любым из предложенных выше методов:AB = BC/cos60 = 8 см.AB = BC/sin30 = 8 см.

Совет 3: Как обнаружить прилежащий катет

Слово «катет » происходит от греческих слов «перпендикуляр» либо «отвесный» – это поясняет, отчего именно так назвали обе стороны прямоугольного треугольника, составляющие его девяностоградусный угол. Обнаружить длину всякого из катет ов несложно, если знаменита величина прилегающего к нему угла и еще какой-нибудь из параметров, потому что в этом случае реально станут знамениты величины всех 3 углов.

Инструкция

1. Если помимо величины прилегающего угла (β) вестима длина второго катет а (b), то длину катет а (a) дозволено определить как частное от деления длины знаменитого катет а на тангенс вестимого угла: a=b/tg(β). Это вытекает из определения этой тригонометрической функции. Дозволено обойтись без тангенса, если воспользоваться теоремой синусов. Из нее следует, что отношение длины желанной стороны к синусу противолежащего угла равно отношению длины вестимого катет а к синусу знаменитого угла. Противолежащий желанному катет у острый угол дозволено выразить через знаменитый угол как 180°-90°-β = 90°-β, потому что сумма всех углов всякого треугольника должна составлять 180°, а по определению прямоугольного треугольника один из его углов равен 90°. Значит, желанную длину катет а дозволено вычислить по формуле a=sin(90°-β)∗b/sin(β).

2. Если вестимы величина прилегающего угла (β) и длина гипотенузы (c), то длину катет а (a) дозволено вычислить как произведение длины гипотенузы на косинус знаменитого угла: a=c∗cos(β). Это вытекает из определения косинуса, как тригонометрической функции. Но дозволено воспользоваться, как и в предыдущем шаге, теоремой синусов и тогда длина желанного катет а будет равняться произведению синуса разницы между 90° и вестимым углом на отношение длины гипотенузы к синусу прямого угла. А от того что синус 90° равен единице, то формулу дозволено записать так: a=sin(90°-β)∗c.

3. Фактические вычисления дозволено изготавливать, скажем, при помощи имеющегося в составе ОС Windows программного калькулятора. Для его запуска дозволено в основном меню на кнопке «Пуск» предпочесть пункт «Исполнить», набрать команду calc и нажать кнопку «OK». В открывающемся по умолчанию простейшем варианте интерфейса этой программы тригонометрические функции не предусмотрены, следственно позже его запуска нужно щелкнуть в меню раздел «Вид» и предпочесть строку «Ученый» либо «Инженерный» (зависит от применяемой версии операционной системы).

Видео по теме

Совет 4: Что такое катет

Слово «катет» пришло в русский язык из греческого. В точном переводе оно обозначает отвес, то есть перпендикуляр к поверхности земли. В математике катетами именуются стороны, образующие прямой угол прямоугольного треугольника. Противолежащая этому углу сторона именуется гипотенузой. Термин «катет» используется также в архитектуре и спецтехнологии сварочных работ.


Начертите прямоугольный треугольник АСВ. Обозначьте его катеты как а и b, а гипотенузу — как с. Все стороны и углы прямоугольного треугольника связаны между собой определенными отношениями. Отношение катета, противолежащего одному из острых углов, к гипотенузе именуется синусом данного угла. В данном треугольнике sinCAB=a/c. Косинус — это отношение к гипотенузе прилежащего катета, то есть cosCAB=b/c. Обратные отношения именуются секансом и косекансом.Секанс данного угла получается при делении гипотенузы на прилежащий катет, то есть secCAB=c/b. Получается величина, обратная косинусу, то есть выразить ее дозволено по формуле secCAB=1/cosSAB. Косеканс равен частному от деления гипотенузы на противолежащий катет и это величина, обратная синусу. Она может быть рассчитана по формуле cosecCAB=1/sinCABОба катета связаны между собой тангенсом и котангенсом. В данном случае тангенсом будет отношение стороны a к стороне b, то есть противолежащего катета к прилежащему. Это отношение может быть выражено формулой tgCAB=a/b. Соответственно, обратным отношением будет котангенс: ctgCAB=b/a. Соотношение между размерами гипотенузы и обоих катетов определил еще древнегреческий математик Пифагор. Теоремой, названной его именем, люди пользуются до сего времени. Она гласит, что квадрат гипотенузы равен сумме квадратов катетов, то есть с2=a2+b2. Соответственно, всякий катет будет равняться квадратному корню из разности квадратов гипотенузы и иного катета. Эту формулу дозволено записать как b=?(с2-а2). Длину катета дозволено выразить и через знаменитые вам соотношения. Согласно теоремам синусов и косинусов, катет равен произведению гипотенузы на одну из этих функций. Дозволено его выразить и через тангенс либо котангенс. Катет а дозволено обнаружить, скажем, по формуле a = b*tan CAB. Верно таким же образом, в зависимости от заданных тангенса либо котангенса, определяется и 2-й катет.В архитектуре также применяется термин «катет». Он используется по отношению к ионической капители и обозначает отвес через середину ее задка. То есть и в этом случае этим термином обозначается перпендикуляр к заданной линии. В спецтехнологии сварочных работ есть представление «катет углового шва». Как и в иных случаях, это самое короткое расстояние. Тут речь идет о интервале между одной из свариваемых деталей до границы шва, находящегося на поверхности иной детали.

Видео по теме


Обратите внимание!
Работая с теоремой Пифагора, не забывайте, что вы имеете дело со степенью. Обнаружив сумму квадратов катетов, для приобретения окончательного результата следует извлечь квадратный корень.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий