Совет 1: Как определить направление вектора напряженности

Заряженные тела могут влиять друг на друга без соприкосновения через электрическое поле. Поле, которое создается статичными электрическими частицами, именуется электростатическим.

Инструкция

1. Если в электрическое поле, создаваемое зарядом Q, разместить еще один заряд Q0, то оно будет влиять на него с определенной силой. Это колляция именуется напряженностью электрического поля E. Она представляет собой отношение силы F, с которое поле действует на правильный электрический заряд Q0 в определенной точке пространства, к значению этого заряда: E = F/Q0.

2. В зависимости от определенной точки пространства, значение напряженности поля E может меняться, что выражается формулой Е = Е (x, y, z, t). Следственно напряженность электрического поля относится к векторным физическим величинам.

3. От того что напряженность поля зависит от силой, действующей на точечный заряд, то вектор напряженности электрического поля E идентичен с вектором силы F. Согласно закону Кулона, сила, с которой взаимодействуют две заряженные частицы в вакууме, направлена по прямой линии, которая соединяет эти заряды.

4. Майкл Фарадей предложил наглядно изображать напряженность поля электрического заряда с поддержкой линий напряженности. Эти линии совпадают с вектором напряженности во всех точках по касательной. На чертежах их принято обозначать стрелками.

5. В том случае, если электрическое поле однородно и вектор его напряженности непрерывен по своему модулю и направлению, то линии напряженности параллельны с ним. Если электрическое поле создается правильно заряженным телом, линии напряженности направлены от него, а в случае с негативно заряженной частицей — по направлению к нему.

Совет 2: Как обнаружить напряженность электрического поля

Для того дабы обнаружить напряженность электрического поля , внесите в него вестимый пробный заряд. Измерьте силу, которая действует на него со стороны поля и рассчитайте значение напряженности. Если электрическое поле создается точечным зарядом либо конденсатором, рассчитайте его по особым формулам.



Вам понадобится

  • электрометр, динамометр, вольтметр, линейку и транспортир.

Инструкция

1. Определение напряженности произвольного электрического поля Возьмите заряженное тело, размеры которого незначительны по сопоставлению размерами тела, генерирующего электрическое поле. Отлично подойдет заряженный металлический шар с малой массой. Измерьте величину его заряда электрометром и внесите в электрическое поле. Уравновесьте силу, действующую на заряд со стороны электрического поля динамометром и снимите с него показания в ньютонах. Позже этого значение силы, поделите на величину заряда в Кулонах (E=F/q). Итогом будет напряженность электрического поля в вольтах на метр.

2. Определение напряженности электрического поля точечного заряда Если электрическое поле генерируется зарядом, величина которого знаменита, для определения его напряженности в некоторой точке пространства удаленной от него, измерьте это расстояние между избранной точкой и зарядом в метрах. Позже этого величину заряда в Кулонах, поделите на измеренное расстояние, возведенное во вторую степень (q/r?). Полученный итог умножьте на показатель 9*10^9.

3. Определение напряженности электрического поля конденсатора Измерьте разность потенциалов (напряжение) между пластинами конденсатора. Для этого параллельно ним присоедините вольтметр, итог зафиксируйте в вольтах. После этого измерьте расстояние между этими пластинами в метрах. Поделите значение напряжения на расстояние между пластинами, итогом будет напряженность электрического поля . Если между пластинами размещен не воздух, определите диэлектрическую проницаемость данной среды и поделите итог не ее значение.

4. Определение электрического поля , сделанного несколькими поля ми Если поле в данной точке является итогом наложения нескольких электрических полей, обнаружьте векторную сумму значений этих полей, с учетом их направления (тезис суперпозиции полей). Если надобно обнаружить электрическое поле, образованное двумя поля ми, постройте их векторы в данной точке, измерьте угол между ними. После этого возведите всякое из их значений в квадрат, обнаружьте их сумму. Вычислите произведение значений напряженности полей, умножьте его на косинус угла, тот, что равен 180? минус угол между векторами напряженностей, а итог умножьте на 2. Позже этого от суммы квадратов напряженностей отнимите полученное число (E=E1?+E2?-2E1E2*Cos(180?-?)). При построении полей рассматривайте, что силовые линии выходят из правильных зарядов и входят в негативные.

Видео по теме

Совет 3: Как определить модуль вектора

Объектами векторной алгебры являются отрезки прямой, имеющие направление и длину, называемую модулем. Дабы определить модуль вектора , следует извлечь квадратный корень из величины, представляющей собой сумму квадратов его проекций на координатные оси.

Инструкция

1. Векторы характеризуются двумя основными свойствами: длиной и направлением. Длина вектора именуется модулем либо нормой и представляет собой скалярное значение, расстояние от точки начала до точки конца. Оба свойства используются для графического изображения разных величин либо действий, скажем, физических сил, движения элементарных частиц и пр.

2. Местоположение вектора в двухмерном либо трехмерном пространстве не влияет на его свойства. Если перенести его в другое место, то изменятся лишь координаты его концов, впрочем модуль и направление останутся бывшими. Эта автономность разрешает применять средства векторной алгебры в разных вычислениях, скажем, определения углов между пространственными прямыми и плоскостями.

3. Весь вектор дозволено задать координатами его концов. Разглядим для начала двухмерное пространство: пускай предисловие вектора находится в точке А (1, -3), а конец – в точке В (4, -5). Дабы обнаружить их проекции, опустите перпендикуляры на ось абсцисс и ординат.

4. Определите проекции самого вектора , которые дозволено вычислить по формуле:АВх = (xb — xa) = 3;ABy = (yb — ya) = -2, где:ABx и ABy – проекции вектора на оси Ох и Оу;xa и xb – абсциссы точек А и В;ya и yb – соответствующие ординаты.

5. В графическом изображении вы увидите прямоугольный треугольник, образованный катетами с длинами, равными проекциям вектора . Гипотенузой треугольника является величина, которую необходимо вычислить, т.е. модуль вектора . Примените теорему Пифагора:|АВ|? = ABx? + ABy? ? |AB| = ?((xb — xa)? + (yb – ya)?) = ?13.

6. Видимо, что для трехмерного пространства формула усложняется путем добавления третьей координаты – аппликат zb и za для концов вектора :|AB| = ?((xb — xa)? + (yb – ya)? + (zb — za)?).

7. Пускай в рассмотренном примере za = 3, zb = 8, тогда:zb – za = 5;|AB| = ?(9 + 4 + 25) = ?38.

Видео по теме

Совет 4: Как определить модуль точечных зарядов

Для того дабы определить модуль точечных зарядов идентичной величины, измерьте силу их взаимодействия и расстояние между ними и произведите расчет. Если же необходимо обнаружить модуль заряда отдельных точечных тел, вносите их в электрическое поле с вестимой напряженностью и измеряйте силу, с которой поле действует на эти заряды.



Вам понадобится

  • — крутильные весы;
  • — линейка;
  • — калькулятор;
  • — измеритель электростатического поля.

Инструкция

1. Если есть два идентичных по модулю заряда, измерьте силу их взаимодействия при помощи крутильных весов Кулона, которые единовременно являются эмоциональным динамометром. Позже того, как заряды придут в баланс, и проволока весов скомпенсирует силу электрического взаимодействия, на шкале весов зафиксируйте значение этой силы. Позже этого при помощи линейки, штангенциркуля, либо по особой шкале на весах обнаружьте расстояние между этими зарядами. Рассматривайте, что разноименные заряды притягиваются, а одноименные отталкиваются. Силу измеряйте в Ньютонах, а расстояние в метрах.

2. Рассчитайте значение модуля одного точечного заряда q. Для этого силу F, с которой взаимодействуют два заряда, поделите на показатель 9•10^9. Из полученного итога извлеките квадратный корень. Итог умножьте на расстояние между зарядами r, q=r•?(F/9•10^9). Заряд получите в Кулонах.

3. Если заряды неодинаковые, то один из них должен быть предварительно знаменит. Силу взаимодействия знаменитого и неведомого заряда и расстояние между ними определите при помощи крутильных весов Кулона. Рассчитайте модуль неведомого заряда. Для этого силу взаимодействия зарядов F, поделите на произведение показателя 9•10^9 на модуль знаменитого заряда q0. Из получившегося числа извлеките квадратный корень и умножьте итог на расстояние между зарядами r; q1=r•?(F/(9•10^9•q2)).

4. Определите модуль незнакомого точечного заряда, внеся его в электростатическое поле. Если его напряженность в данной точке заблаговременно незнакома, внесите в нее датчик измерителя электростатического поля. Напряженность измеряйте в вольтах на метр. Внесите в точку с вестимой напряженностью заряд и с поддержкой эмоционального динамометра измерьте силу в Ньютонах, действующую на него. Определите модуль заряда, поделив значение силы F на напряженность электрического поля E; q=F/E.

Видео по теме


Обратите внимание!
Вектор напряженности имеет лишь одно направление в всякой точке пространства, следственно линии напряженности никогда не пересекаются.