Совет 1: Как обнаружить угол в прямоугольном треугольнике
Теснее из самого наименования “прямоугольного” треугольника становится ясно, что один угол в нем составляет 90 градусов. Остальные углы дозволено обнаружить, припомнив нехитрые теоремы и свойства треугольников.
Вам понадобится
- Таблица синусов и косинусов, таблица Брадиса
Инструкция
1. Обозначим углы треугольника буквами A, B и C, как это показано на рисунке. Угол BAC равен 90º, два других угла обозначим буквами α и β. Катеты треугольника обозначим буквами a и b, а гипотенузу буквой c.
2. Тогда sinα = b/c, а cosα = a/c.Подобно для второго острого угла треугольника: sinβ = a/c, а cosβ = b/c.В зависимости от того, какие стороны нам вестимы, вычисляем синусы либо косинусы углов и глядим по таблице Брадиса значение α и β.
3. Обнаружив один из углов, дозволено припомнить, что сумма внутренних углов треугольника равна 180º. Значит, сумма α и β равна 180º – 90º = 90º.Тогда, вычислив значение для α по таблицам, можем для нахождения β воспользоваться дальнейшей формулой: β = 90º – α
4. Если незнакома одна из сторон треугольника, то применяем теорему Пифагора: a²+b²=c². Выведем из нее выражение для незнакомой стороны через две другие и подставим в формулу для нахождения синуса либо косинуса одного из углов.
Совет 2: Как обнаружить гипотенузу в прямоугольном треугольнике
Гипотенузой называют сторону в прямоугольном треугольнике, лежащую наоборот прямого угла. Гипотенуза является самой длинной стороной в прямоугольном треугольнике. Остальные стороны в прямоугольном треугольнике именуются катетами.
Вам понадобится
- Базовые познания геометрии.
Инструкция
1. Квадрат длины гипотенузы равен сумме квадратов катетов. То есть, дабы обнаружить квадрат длины гипотенузы, нужно построить в квадрат длины катетов и сложить.
2. Длина гипотенузы равна корню квадратному из квадрата ее длины. Дабы обнаружить ее длину, извлечем квадратный корень из числа, равного сумме квадратов катетов. Полученное число и будет длиной гипотенузы.
Видео по теме
Обратите внимание!
Длина гипотенузы величина правильная, следственно при извлечении корня, подкоренное выражение должно быть огромнее нуля.
Полезный совет
В равнобедренном прямоугольном треугольнике длину гипотенузы дозволено вычислить умножив катет на корень из 2-х.
Совет 3: Как обнаружить острый угол в прямоугольном треугольнике
Прямоугольный треугольник, возможно, – одна из самых вестимых, с исторической точки зрения, геометрических фигур. Пифагоровым “штанам” конкуренцию может составить лишь “Эврика!” Архимеда.
Вам понадобится
- – чертеж треугольника;
- – линейка;
- – транспортир.
Инструкция
1. Как водится, вершины углов треугольника обозначаются заглавными латинскими буквами (A, B, C), а противоположные им стороны маленькими латинскими буквами (a, b, c) либо по наименованиям вершин треугольника, образующих эту сторону (AC, BC, AB).
2. Сумма углов треугольника составляет 180 градусов. В прямоугольном треугольнике один угол (прямой) неизменно будет 90 градусов, а остальные острыми, т.е. поменьше 90 градусов весь. Дабы определить, какой угол в прямоугольном треугольнике является прямым, измерьте с подмогой линейки стороны треугольника и определите крупнейшую. Она именуется гипотенуза (AB) и располагается наоборот прямого угла (C). Остальные две стороны образуют прямой угол и именуются катетами (AC, BC).
3. Когда определили, какой угол является острым, вы можете либо измерить величину угла при помощи транспортира, либо рассчитать с поддержкой математических формул.
4. Дабы определить величину угла с поддержкой транспортира, совместите его вершину (обозначим ее буквой А) с особой отметкой на линейке в центре транспортира, катет АС должен совпадать с ее верхним краем. Подметьте на полукруглой части транспортира точку, через которую проходит гипотенуза AB. Значение в этой точке соответствует величине угла в градусах. Если на транспортире указаны 2 величины, то для острого угла необходимо выбирать меньшую, для тупого – крупную.
5. Величину угла дозволено рассчитать, сделав несложные математические вычисления. Вам потребуется умение основ тригонометрии. Если знамениты длина гипотенузы AB и катета ВС, вычислите значение синуса угла А: sin (A) = BC / AB.
6. Полученное значение обнаружьте в справочных таблицах Брадиса и определите какому углу соответствует полученное числовое значение. Этим способом пользовались наши бабушки.
7. В наше время довольно взять калькулятор с функцией вычисления тригонометрических формул. Скажем, встроенный калькулятор Windows. Запустите приложение “Калькулятор”, в пункте меню “Вид” предпочтете пункт “Инженерный”. Вычислите синус желанного угла, скажем, sin (A) = BC/AB = 2/4 = 0.5
8. Переключите калькулятор в режим обратных функций, кликнув по кнопке INV на табло калькулятора, после этого кликните по кнопке расчета функции арксинуса (на табло обозначена, как sin в минус первой степени). В окошке расчета появится дальнейшая надпись: asind (0.5) = 30. Т.е. значение желанного угла – 30 градусов.
Совет 4: Как обнаружить неведомую сторону в треугольнике
Метод вычисления неведомой стороны треугольника зависит не только от условий задания, но и от того, для чего это делается. С сходственной задачей сталкиваются не только школьники на уроках геометрии, но и инженеры, работающие в различных отраслях производства, дизайнеры интерьера, закройщики и представители многих других профессий. Точность вычислений для различных целей может быть различной, но правило их остается тем же самым, что и в школьном задачнике.
Вам понадобится
- – треугольник с заданными параметрами;
- – калькулятор;
- – ручка;
- – карандаш;
- – транспортир;
- – лист бумаги;
- – компьютер с программой AutoCAD;
- – теоремы синусов и косинусов.
Инструкция
1. Начертите треугольник, соответствующий условиям задания. Треугольник дозволено возвести по трем сторонам, двум сторонам и углу между ними либо стороне и двум прилегающим к ней углам. Тезис работы в тетради и на компьютере в программе AutoCAD в этом плане идентичны. Так что в задании неукоснительно обязаны быть указаны размеры одной либо 2-х сторон и одного либо 2-х углов.
2. При построении по двум сторонам и углу начертите на листе отрезок, равный вестимой стороне. С поддержкой транспортира отложите данный угол и проведите вторую сторону , отложив данный в условии размер. Если вам дана одна сторона и два прилежащих к ней угла, начертите вначале сторону , потом от 2-х концов полученного отрезка отложите углы и проведите две другие стороны. Обозначьте треугольник как ABC.
3. В программе AutoCAD комфортнее каждого строить неверный треугольник с подмогой инструмента «Отрезок». Вы обнаружите его через основную вкладку, предпочтя окно «Рисование». Задайте координаты знаменитой вам стороны, после этого — финальной точки второго заданного отрезка.
4. Определите вид треугольника. Если он прямоугольный, то незнакомая сторона вычисляется по теореме Пифагора. Гипотенуза равна квадратному корню из суммы квадратов катетов, то есть c=?a2+b2. Соответственно, всякий их катетов будет равно квадратному корню из разности квадратов гипотенузы и знаменитого катета: a=?c2-b2.
5. Для вычисления неведомой стороны треугольника, у которого даны сторона и два прилежащих угла, воспользуйтесь теоремой синусов. Сторона а так относится к sin?, как сторона b к sin?. ? и ? в данном случае — противолежащие углы. Угол, тот, что не задан условиями задачи, дозволено обнаружить, припомнив, что сумма внутренних углов треугольника равна 180°. Вычтите из нее сумму вестимых вам 2-х углов. Обнаружьте неизвестную вам сторону b, решив пропорцию обыкновенным методом, то есть умножив знаменитую сторону а на sin? и поделив это произведение на sin?. Вы получаете формулу b=a*sin?/sin?.
6. Если вам знамениты стороны a и b и угол ? между ними, используйте теорему косинусов. Незнакомая сторона с будет равна квадратному корню из суммы квадратов 2-х других сторон, минус удвоенное произведение этих же сторон, умноженное на косинус угла между ними. То есть c=?a2+b2-2ab*cos?.
Видео по теме
Совет 5: Как вычислить угол в прямоугольном треугольнике
Прямоугольный треугольник составляют два острых угла, величина которых зависит от длин сторон, а также один угол неизменно постоянной величины 90°. Вычислить размер острого угла в градусах дозволено с применением тригонометрических функций либо теоремы о сумме углов в вершинах треугольника в евклидовом пространстве.
Инструкция
1. Используйте тригонометрические функции, если в условиях задачи даны лишь размеры сторон треугольника. Скажем, по длинам 2-х катетов (коротких сторон, прилегающих к прямому углу) дозволено вычислить всякий из 2-х острых углов. Тангенс того угла (?), тот, что прилегает к катету А, дозволено обнаружить делением длины противолежащей ему стороны (катета В) на длину стороны А: tg(?) = В/А. А зная тангенс, дозволено вычислить и соответствующую ему величину угла в градусах. Для этого предуготовлена функция арктангенс: ? = arctg(tg(?)) = arctg(В/А).
2. По этой же формуле дозволено обнаружить величину и иного острого угла, лежащего наоборот катета А. Примитивно поменяйте обозначения сторон. Но дозволено сделать это и напротив, с подмогой иной пары тригонометрических функций – котангенса и арккотангенса. Котангенс угла b определяется делением длины прилежащего катета А на длину противолежащего В: tg(?) = А/В. А арккотангенс поможет извлечь из полученного значения величины угла в градусах: ? = arсctg(сtg(?)) = arсctg(А/В).
3. Если в начальных условиях дана длина одного из катетов (А) и гипотенузы (С), то для вычисления углов используйте функции, обратные синусу и косинусу – арксинус и арккосинус. Синус острого угла ? равен отношению длины лежащего наоборот него катета В к длине гипотенузы С: sin(?) = В/С. Значит, для вычисления величины этого угла в градусах применяйте такую формулу: ? = arcsin(В/С).
4. А значение косинуса угла ? определяется отношением длины примыкающего к этой вершине треугольника катета А к длине гипотенузы С. Это значит, что для вычисления величины угла в градусах, по аналогии с предыдущей формулой, нужно применять такое равенство: ? = arccos(А/С).
5. Теорема о сумме углов треугольника делает непотребным применение тригонометрических функций, если в условиях задачи дана величина одного из острых углов. В этом случае для вычисления неведомого угла (?) легко отнимите от 180° величины 2-х вестимых углов – прямого (90°) и острого (?): ? = 180° – 90° – ? = 90° – ?.
Обратите внимание!
Высота h делит треугольник ABC на два прямоугольных треугольника, сходственных ему. Тут срабатывает знак подобия треугольников по трем углам.