Как найти наименьший положительный период функции

Совет 1: Как обнаружить минимальный позитивный период функции

Минимальный позитивный период функции в тригонометрии обозначается f. Он характеризуется наименьшим значением позитивного числа T, то есть поменьше его значение T теснее не будет являться период ом функции .



Вам понадобится

  • – математический справочник.

Инструкция

1. Обратите внимание на то, что период ическая функция не неизменно имеет минимальный правильный период . Так, к примеру, в качестве период а непрерывной функции может быть безусловно всякое число, а значит, у нее может и не быть наименьшего позитивного период а. Встречаются также и непостоянные период ические функции , у которых нет наименьшего правильного период а. Впрочем в большинстве случаев минимальный правильный период у период ических функций все же есть.

2. Минимальный период синуса равен 2?. Разглядите подтверждение этого на примере функции y=sin(x). Пускай T будет произвольным период ом синуса, в таком случае sin(a+T)=sin(a) при любом значении a. Если a=?/2, получается, что sin(T+?/2)=sin(?/2)=1. Впрочем sin(x)=1 лишь в том случае, когда x=?/2+2?n, где n представляет собой целое число. Отсель следует, что T=2?n, а значит, наименьшим позитивным значением 2?n является 2?.

3. Минимальный правильный период косинуса тоже равен 2?. Разглядите подтверждение этого на примере функции y=cos(x). Если T будет произвольным период ом косинуса, то cos(a+T)=cos(a). В том случае если a=0, cos(T)=cos(0)=1. Ввиду этого, наименьшим позитивным значением T, при котором cos(x)=1, есть 2?.

4. Рассматривая тот факт, что 2? – период синуса и косинуса, это же значение будет и период ом котангенса, а также тангенса, впрочем не минимальным, от того что, как знаменито, минимальный правильный период тангенса и котангенса равен ?. Удостовериться в этом сумеете, разглядев дальнейший пример: точки, соответствующие числам (х) и (х+?) на тригонометрической окружности, имеют диаметрально противоположное расположение. Расстояние от точки (х) до точки (х+2?) соответствует половине окружности. По определению тангенса и котангенса tg(x+?)=tgx, а ctg(x+?)=ctgx, а значит, минимальный правильный период котангенса и тангенса равен ?.

Совет 2: Как находить период функции

Периодической функцией именуется функция, повторяющая свои значения через какой-то ненулевой период. Периодом функции именуется число, при добавление которого к доводу функции значение функции не меняется.



Вам понадобится

  • Знания по элементарной математике и началам обзора.

Инструкция

1. Обозначим период функции f(x) через число К. Наша задача обнаружить это значение К. Для этого представим, что функция f(x), пользуясь определением периодической функции, приравняем f(x+K)=f(x).

2. Решаем полученное уравнение касательно незнакомой K, так, как словно x – константа. В зависимости от значения К получится несколько вариантов.

3. Если K>0 – то это и есть период вашей функции.Если K=0 – то функция f(x) не является периодической.Если решение уравнения f(x+K)=f(x) не существует ни при каком K не равном нулю, то такая функция именуется апериодической и у неё тоже нет периода.

Видео по теме


Обратите внимание!
Все тригонометрические функции являются периодическими, а все полиномиальные со степенью огромнее 2 – апериодическими.

Полезный совет
Периодом функции, состоящей из 2-х периодический функций, является Наименьшее всеобщее кратное периодов этих функций.

Совет 3: Как обнаружить период функции

Если рассматривать точки на окружности, то точки x, x + 2π, x + 4π и т.д. совпадают друг с ином. Таким образом, тригонометрические функции на прямой периодически повторяют свое значение. Если знаменит период функции , дозволено возвести функцию на этом периоде и повторить ее на других.

Инструкция

1. Период – это число T, такое что f(x) = f(x+T). Дабы обнаружить период, решают соответствующее уравнение, подставляя в качестве довода x и x+T. При этом пользуются теснее вестимыми периодами для функций. Для функций синуса и косинуса период составляет 2π, а для тангенса и котангенса – π.

2. Пускай дана функция f(x) = sin^2(10x). Разглядите выражение sin^2(10x) = sin^2(10(x+T)). Воспользуйтесь формулой для понижения степени: sin^2(x) = (1 – cos 2x)/2. Тогда получите 1 – cos 20x = 1 – cos 20(x+T) либо cos 20x = cos (20x+20T). Зная, что период косинуса равен 2π, 20T = 2&#960. Значит, T = π/10. Т – минимальный правильный период, а функция будет повторяться и через 2Т, и через 3Т, и в иную сторону по оси: -T, -2T и т.д.

Полезный совет
Пользуйтесь формулами для понижения степени функции. Если вам теснее знамениты периоды каких-нибудь функций, пробуйте свести имеющуюся функцию к знаменитым.

Совет 4: Как обнаружить минимальный период функции

Функция, значения которой повторяются через определенное число, именуется периодической . То есть сколько бы периодов вы ни прибавили к значению х, функция будет равна одному и тому же числу. Всякое изыскание периодических функций начинается с поиска наименьшего периода, дабы не исполнять лишнюю работу: довольно исследовать все свойства на отрезке, равном периоду.

Инструкция

1. Воспользуйтесь определением периодической функции . Все значения х в функции замените на (х+Т), где Т – минимальный период функции . Решите полученное уравнение, считая Т незнакомым числом.

2. В итоге вы получите некое тождество, из него испробуйте подобрать наименьший период. Скажем, если получилось равенство sin(2T)=0,5, следственно, 2Т=П/6, то есть Т=П/12.

3. Если равенство получается правильным только при Т=0 либо параметр Т зависит от х (скажем, получилось равенство 2Т=х), делайте итог о том, что функция не периодична.

4. Для того дабы узнать минимальный период функции , содержащей лишь одно тригонометрическое выражение, воспользуйтесь правилом. Если в выражении стоит sin либо cos, периодом для функции будет 2П, а для функций tg, ctg ставьте минимальный период П. Учтите при этом, что функция не должна быть возведена в какую-нибудь степень, а переменная под знаком функции не должна быть умножена на число, хорошее от 1.

5. Если cos либо sin внутри функции построены в четную степень, уменьшите период 2П в два раза. Графически вы можете увидеть это так: график функции , расположенный ниже оси ох, симметрично отразится вверх, следственно функция будет повторяться в два раза почаще.

6. Дабы обнаружить минимальный период функции при том, что угол х умножен на какое либо число, действуете так: определите типовой период этой функции (скажем, для cos это 2П). После этого поделите его на множитель перед переменной. Это и будет желанный минимальный период. Уменьшение периода отменно видно на графике: он сжимается ровно во столько раз, на сколько умножен угол под знаком тригонометрической функции .

7. Обратите внимание, если перед х стоит дробное число поменьше 1, период возрастает, то есть график, наоборот, растягивается.

8. Если в вашем выражении две периодические функции умножены друг на друга, обнаружьте минимальный период для всякой по отдельности. После этого определите минимальный всеобщий множитель для них. Скажем, для периодов П и 2/3П минимальный всеобщий множитель будет 3П (он делится без остатка как на П, так и на 2/3П).

Совет 5: Как обнаружить среднюю зарплату

Расчет размера средней заработной платы работников нужен для начисления пособий по временной нетрудоспособности, оплаты командировок. Средний заработок экспертов исчисляется, исходя из реально отработанного времени, и зависит от оклада, надбавок, премий, указанных в штатном расписании.



Вам понадобится

  • – штатное расписание;
  • – калькулятор;
  • – право;
  • – производственный календарь;
  • – табель учета рабочего времени либо акт исполненных работ.

Инструкция

1. Для того дабы сделать расчет средней заработной платы работника, вначале определите период, за тот, что нужно ее исчислить. Как водится, таким периодом выступает 12 календарных месяцев. Но если работник трудится на предприятии менее года, к примеру, 10 месяцев, то вам необходимо обнаружить средний заработок за время, которое эксперт исполняет свою трудовую функцию.

2. Сейчас определите сумму заработной платы, которая была реально начислена ему за расчетный период. Для этого используйте расчетные ведомости, по которым работнику выдавались все положенные ему выплаты. Если немыслимо воспользоваться этими документами, то месячный оклад, премии, надбавки умножьте на 12 (либо то число месяцев, которое работник трудится на предприятии, если он оформлен в компании менее года).

3. Рассчитайте среднедневной заработок. Для этого сумму заработной платы за расчетный период поделите на среднее число дней в месяце (в текущее время оно составляет 29,4). Полученный итог поделите на 12.

4. После этого определите число реально отработанного времени. Для этого используйте табель учета рабочего времени. Данный документ должен заполнять табельщик, кадровый служащий либо другой работник, у которого это прописано в должностных обязанностях.

5. Число реально отработанного времени умножьте на среднедневной заработок. Полученная сумма является средней заработной платой эксперта за год. Итог поделите на 12. Это будет среднемесячным заработком. Такой расчет используется для работников, у которых начисление заработной платы зависит от реально отработанного времени.

6. Когда работнику установлена сдельная оплата труда, то тарифную ставку (указанную в штатном расписании и определенную трудовым договором) умножьте на число произведенных изделий (используйте акт исполненных работ либо иной документ, в котором это фиксируется).

Обратите внимание!
Не путайте функции y=cos(x) и y=sin(x) – имея идентичный период, эти функции изображаются по-различному.

Полезный совет
Для большей наглядности изобразите тригонометрическую функцию, у которой рассчитывается минимальный правильный период.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий