Как найти градиент функции

Совет 1: Как обнаружить градиент функции

Градиент функции – векторная величина, нахождение которой связано с определением частных производных функции. Направление градиента указывает путь наискорейшего роста функции от одной точки скалярного поля к иной.

Инструкция

1. Для решения задачи на градиент функции применяются способы дифференциального исчисления, а именно нахождение частных производных первого порядка по трем переменным. При этом предполагается, что сама функция и все ее частные производные владеют свойством непрерывности в области определения функции.

2. Градиент – это вектор, направление которого указывает направление максимально стремительного возрастания функции F. Для этого на графике выбираются две точки M0 и M1, которые являются концами вектора. Величина градиента равна скорости возрастания функции от точки M0 к точке M1.

3. Функция дифференцируема во всех точках этого вектора, следственно, проекциями вектора на координатных осях являются все ее частные производные. Тогда формула градиента выглядит дальнейшим образом:grad = (?F/?х)•i + (?F/?y)•j + (?F/?z)•k, где i, j, k – координаты единичного вектора. Иными словами, градиент функции – это вектор, координатами которого являются ее частные производные grad F = (?F/?х, ?F/?y, ?F/?z).

4. Пример1.Пускай задана функция F = sin(х•z?)/y. Требуется обнаружить ее грaдиент в точке (?/6, 1/4, 1).

5. Решение.Определите частные производные по всякой переменной: F’_х = 1/y•соs(х•z?)•z?;F’_y = sin(х•z?)•(-1)•1/(y?);F’_z = 1/y•соs(х•z?)•2•х•z.

6. Подставьте знаменитые значения координат точки:F’_x = 4•соs(?/6) = 2•?3; F’_y = sin(?/6)•(-1)•16 = -8; F’_z = 4•соs(?/6)•2•?/6 = 2•?/?3.

7. Примените формулу градиента функции:grаd F = 2•?3•i – 8•j + 2•?/?3•k.

8. Пример2.Обнаружьте координаты градиента функции F = y•arсtg (z/x) в точке (1, 2, 1).

9. Решение.F’_х = 0•аrсtg (z/х) + y•(аrсtg(z/х))’_х = y•1/(1 + (z/х)?)•(-z/х?) = -y•z/(х?•(1 + (z/х)?)) = -1;F’_y = 1•аrсtg(z/х) = аrсtg 1 = ?/4;F’_z = 0•аrсtg(z/х) + y•(аrсtg(z/х))’_z = y•1/(1 + (z/х)?)•1/х = y/(х•(1 + (z/х)?)) = 1.grаd = (-1, ?/4, 1).

Совет 2: Как обнаружить градиент скалярного поля

Градиент скалярного поля является векторной величиной. Таким образом, для его нахождения требуется определить все компоненты соответствующего вектора, исходя из познаний о разделении скалярного поля.

Инструкция

1. Прочитайте в учебнике по высшей математике, что собой представляет градиент скалярного поля. Как вестимо, данная векторная величина имеет направление, характеризующееся максимальной скоростью спада скалярной функции. Такой толк данной векторной величины обосновывается выражением для определения ее компонент.

2. Помните, что всякий вектор определяется величинами его компонент. Компоненты вектора являются реально проекциями этого вектора на ту либо другую координатную ось. Таким образом, если рассматривается трехмерное пространство, то у вектора должно быть три компоненты.

3. Запишите, как определяются компоненты вектора, являющегося градиентом некоторого поля. Вся из координат такого вектора равна производной скалярного потенциала по переменной, координата которой рассчитывается. То есть, если нужно вычислить «иксовую» компоненту вектора градиента поля, то надобно продифференцировать скалярную функцию по переменной «икс». Обратите внимание, что производная должна быть частная. Это обозначает, что при дифференцировании остальные переменные, не участвующие в нем, надобно считать константами.

4. Напишите выражение для скалярного поля. Как знаменито, данный термин подразумевает собой каждого лишь скалярную функцию нескольких переменных, являющихся также скалярными величинами. Число переменных скалярной функции ограничено размерностью пространства.

5. Продифференцируйте отдельно скалярную функцию по всякой переменной. В результате у вас получится три новые функции. Впишите всякую функцию в выражение для вектора градиента скалярного поля. Всякая из полученных функций реально является показателем при единичном векторе данной координаты. Таким образом, финальный вектор градиента должен выглядеть как многочлен с показателями в виде производных функции.

Совет 3: Как обнаружить градиент

При рассмотрении вопросов, включающих представление градиента, почаще каждого функции воспринимают как скалярные поля. Следственно нужно ввести соответствующие обозначения.



Вам понадобится

  • – буман;
  • – ручка.

Инструкция

1. Пускай функция задается тремя доводами u=f(x, y, z). Частную производную функции, на пример по х, определяют как производную по этому доводу, полученную при фиксировании остальных доводов. Для остальных доводов подобно. Обозначения частной производной записывается в виде: дf/дх = u’x …

2. Полный дифференциал будет равен du=(дf/дх)dx+ (дf/дy)dy+(дf/дz)dz.Частные производные дозволено понимать, как производные по направлениям координатных осей. Следственно появляется вопрос о нахождении производной по направлению заданного вектора s в точке M(x, y, z) (не забывайте, что направление s задает единичный вектор-орт s^o). При этом вектор-дифференциал доводов {dx, dy, dz}={дscos(альфа), дsсоs(бета), дsсоs(гамма)}.

3. Рассматривая вид полного дифференциала du, дозволено сделать итог, что производная по направле-нию s в точке М равна:(дu/дs)|M=((дf/дх)|M)соs(альфа)+ ((дf/дy)|M) соs(бета) +((дf/дz)|M) соs(гамма).Если s= s(sx,sy,sz), то направляющие косинусы {соs(альфа), соs(бета), соs(гамма)} вычисляются (см. рис.1а).

Как обнаружить градиент

4. Определение производной по направлению, считая точку М переменной, дозволено переписать в виде скалярного произведения: (дu/дs)=({дf/дх, дf/дy,дf/дz}, {соs(альфа), соs(бета), соs(гамма)})=(grad u, s^o). Данное выражение будет объективно для скалярного поля. Если рассматривается легко функ-ция, то gradf – это вектор, имеющий координаты, совпадающие с частными производными f(x, y, z).gradf(x,y,z)={{дf/дх, дf/дy, дf/дz}=)=(дf/дх)i+(дf/дy)j +(дf/дz)k. Тут (i, j, k) – орты координатных осей в прямоугольной декартовой системе координат.

5. Если применять дифференциальный вектор-оператор Гамильтона набла, то gradf дозволено записать, как умножение этого вектора-оператора на скаляр f (см. рис. 1б). С точки зрения связи gradf c производной по направлению, равенство (gradf, s^o)=0 допустимо, если эти векторы ортогональны. Следственно gradf зачастую определяют, как направление быстрейшего метаморфозы скалярного поля. А с точки зрения дифференциальных операций (gradf – одна из них), свойства gradf в точности повторяют свойства дифференцирования функций. В частности, если f=uv, то gradf=(vgradu+u gradv).

Видео по теме

Совет 4: Как нарисовать градиент

Градиент это инструмент, в графических редакторах исполняющий заливку силуэта плавным переходом одного цвета в иной. Градиент может придать силуэту результат объема, имитировать освещение, блики света на поверхности предмета либо результат заката на заднем плане фотографии. Данный инструмент имеет широкое использование, следственно для обработки фотографий либо создания иллюстраций дюже значимо обучится им пользоваться.



Вам понадобится

  • Компьютер, графический редактор Adobe Photoshop, Corel Draw, Paint.Net либо иной.

Инструкция

1. Откройте в программе изображение либо сделайте новое. Сделайте силуэт либо выделите надобную область на изображении.

2. Включите инструмент градиент на панели инструментов графического редактора. Разместите курсор мышки на точку внутри выделенной области либо силуэта, в которой будет начинаться 1-й цвет градиента. Нажмите и удерживайте левую клавишу мышки. Перемещайте курсор в точку, в которой градиент должен перейти в конечный цвет. Отпустите левую клавишу мышки. Выделенный силуэт заполнит заливка градиентом.

3. Градиент у дозволено задать прозрачность, цвета и их соотношение в определенной точке заливки. Для этого откройте окно редактирования градиента. Дабы открыть окно редактирования в Photoshop – кликните по примеру градиента в панели «Параметры».

4. В открывшемся окне в виде примеров отображаются доступные варианты градиентной заливки. Дабы отредактировать один из вариантов выберите его кликом мышки.

5. В нижней части окна отображается пример градиента в виде широкой шкалы, на которой расположены ползунки. Ползунки обозначают точки, в которых градиент должен иметь заданные колляции, а в интервале между ползунками цвет равномерно переходит из заданного в первой точке к цвету 2-й точки.

6. Ползунки, которые расположены в верхней части шкалы задают прозрачность градиента. Дабы изменить прозрачность кликните по необходимому ползунку. Под шкалой появится поле, в которое введите необходимую степень прозрачности в процентах.

7. Ползунки в нижней части шкалы задают цвета градиента. Кликнув по одному из них, вы сумеете предпочесть надобный цвет.

8. Градиент может иметь несколько цветов перехода. Дабы задать еще один цвет – кликните по свободному месту на нижней части шкалы. На ней появится еще один ползунок. Задайте для него необходимый цвет. Шкала отобразит пример градиента с еще одной точкой. Вы можете передвигать ползунки, удерживая их с поддержкой левой клавиши мышки, дабы добиться необходимого сочетания.

9. Градиент ы бывают нескольких типов, которые могут придать форму плоским силуэтам. Скажем, дабы придать окружности форму шара применяется радиальный градиент, а дабы придать форму конуса – конусовидный. Дабы придать поверхности иллюзию выпуклости дозволено воспользоваться зеркальным градиентом, а ромбовидный градиент может применяться для создания бликов.

Видео по теме


Видео по теме

Понравилась статья? Поделиться с друзьями:
Добавить комментарий